什么是分层抽样
是指分别对每个类别进行随机抽样。分层采样往往是为保证在采样空间或类型选取上的均匀性及代表性所采用的方法。
分层的依据可因精度评价的目标而异,常用的分层有地理区、自然生态区、行政区域或分类后的类别等。
在每层内抽样的方式可以是简单随机或系统采样,如没有特殊需要,随机抽样可取得较好的样本,但在野外调查或抽样时有可能遇到能否到达采样地点等问题。
分层抽样(stratifiedsampling)
先将总体的单位按某种特征分为若干次级总体(层),然后再从每一层内进行单纯随机抽样,组成一个样本。分层可以提高总体指标估计值的精确度,它可以将一个内部变异很大的总体分成一些内部变异较小的层(次总体)。每一层内个体变异越小越好,层间变异则越大越好。
分层抽样比单纯随机抽样所得到的结果准确性更高,组织管理更方便,而且它能保证总体中每一层都有个体被抽到。这样除了能估计总体的参数值,还可以分别估计各个层内的情况,因此分层抽样技术常被采用。
例如,一个单位的职工有500人,其中不到35岁有125人,35岁至49岁的有280人,50岁以上的有95人.为了了解这个单位职工与身体状况有关的某项指标,要从中抽取一个容量为100的样本,由于职工年龄与这项指标有关,决定采用分层抽样方法进行抽取.因为样本容量与总体的个数的比为1:5,所以在各年龄段抽取的个数依次为125/5,280/5,95/5,即25,56,19。
一般地,在抽样时,将总体分成互不交叉的层,然后按一定的比例,从各层次独立地抽取一定数量的个体,将各层次取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。
又称分类抽样或类型抽样。将总体划分为若干个同质层,再在各层内随机抽样或机械抽样,分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性。
分层抽样根据在同质层内抽样方式不同,又可分为一般分层抽样和分层比例抽样,一般分层抽样是根据样品变异性大小来确定各层的样本容量,变异性大的层多抽样,变异性小的层少抽样,在事先并不知道样品变异性大小的情况下,通常多采用分层比例抽样。