无穷比无穷极限怎么求
比无穷型求极限时,我们需要将其转化为“无穷小量之比”或者“有限量之差”的形式进行运算。常用的方法有通分、换元等,以便进行一些简化和消去不定式的操作,然后使用极限运算的规则进行推导,得出最终结果。需要注意的是,在推导过程中,我们要注意变量的取值范围,避免因为忽略一些重要的条件而导致结果错误。同时,我们也需要掌握一些常用的极限运算法则和一些特殊的极限形式,才能更好地解决各类数学问题。
所有无穷大比无穷大的极限都可以转化为0/0型极限来求,也可以直接运用洛必达法则。对于整式无穷大比整式无穷大型的未定式,求极限法则为:
1.
(1)当分母次数高时,结果为0;
2.
(2)当分子次数高时,结果仍是无穷大;
3.
(3)当分子分母的次数相同时,结果是相同的最高次项的系数比。