向量的乘积公式

向量乘积的公式是a·b=|a||b|cosθ。

在数学中,向量指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指代表向量的方向,线段长度代表向量的大小。

在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。

向量的乘积有两种,即向量的数积和向量积。向量的数积是数量,其值等于两向量模的积,再乘以两向量夹角的余弦值。两向量的向量积是向量。方向由右手定则确定。值是两向量模的乘积,再乘以两问量夹角的正弦值。

是:|c|=|a×b|=|a||b|sin<a,b>。

即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。

而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。

*运算结果c是一个伪向量。这是因为在不同的坐标系中c可能不同。

两个向量相乘公式:向量a•向量b=|向量a|*|向量b|*cos,设向量a=(x1,y1),向量b=(x2,y2),|向量a|=√(x1^2+y1^2),|向量b|=√(x2^2+y2^2)。

向量a=(x1,y1),向量b=(x2,y2)

a·b=x1x2+y1y2=|a||b|cosθ(θ是a,b夹角)

PS:向量之间不叫"乘积",而叫数量积..如a·b叫做a与b的数量积或a点乘b

向量积公式

向量积|c|=|a×b|=|a||b|sin<a,b>

向量相乘分内积和外积

内积ab=丨a丨丨b丨cosα(内积无方向,叫点乘)

外积a×b=丨a丨丨b丨sinα(外积有方向,叫×乘)那个读差,即差乘,方便表达所以用差。

另外外积可以表示以a、b为边的平行四边形的面积

=两向量的模的乘积×cos夹角

=横坐标乘积+纵坐标乘积。

营销型网站