什么是有界数列 怎么证明
有界数列是指序列中的所有项都被上下界所限制,即存在一个上界和一个下界,使得序列中的每一项都不超过上界且不小于下界。
要证明一个数列是有界的,可以通过使用上确界和下确界的定义来进行证明。具体地,通过分别找到数列中的上确界和下确界,若两者存在,则可以证明该数列是有界的。上确界是所有上界中的最小上界,下确界是所有下界中的最大下界。证明可以通过数学严谨的推理来进行。
有界数列,是数学领域的定理,是指任一项的绝对值都小于等于某一正数的数列。有界数列是指数列中的每一项均不超过一个固定的区间,其中分上界和下界。假设存在定值a,任意n有{An(n为下角标,下同)=B,称数列{An}有下界B,如果同时存在A、B时的数列{An}的值在区间[A,B]内,数列有界。
1、有界数列的定义:
若数列{Xn}满足:对一切n有Xn≤M其中M是与n无关的常数称数列{Xn}上有界(有上界)并称M是他的一个上界,对一切n有Xn≥m其中m是与n无关的常数称数列{Xn}下有界(有下界)并称m是他的一个下界,一个数列{Xn},若既有上界又有下界,则称之为有界数列。显然数列{Xn}有界的一个等价定义是:存在正实数X,使得数列的所有项都满足|Xn|≤X,n=1,2,3,……。
2、有界数列的证明:
∵数列{Xn}是收敛的
∴设其极限为a
根据数列极限的定义,对于ε=1,存在正整数N
当n>N是不等式|Xn-a|N时,|Xn|=|(Xn-a)+a|
证毕。
3、有界数列示例:
(1)1,2,3,4
(2){1/n},n=1,2,3...
扩展资料:
1、有界数列的应用:
数列有极限的必要条件:
数列单调增且有上界或数列单调减且有下界=>数列有极限。
2、函数的有界性:
函数的有界性定义:若存在两个常数m和M,使函数y=f(x),x∈D满足m≤f(x)≤M,x∈D。则称函数y=f(x)在D有界,其中m是它的下界,M是它的上界。
3、函数有界性的要点:
(1)函数在某区间上不是有界就是无界,二者必属其一;
(2)从几何学的角度很容易判别一个函数是否有界.如果找不到两条与x轴平行的直线使得函数的图形介于它们之间,那么函数一定是无界的。